A new approach for crop identification with wavelet variance and JM distance.

نویسندگان

  • Bingwen Qiu
  • Zhanling Fan
  • Ming Zhong
  • Zhenghong Tang
  • Chongcheng Chen
چکیده

This paper develops a new crop mapping method through combined utilization of both time and frequency information based on wavelet variance and Jeffries-Matusita (JM) distance (CIWJ for short). A two-dimensional wavelet spectrum was obtained from datasets of daily continuous vegetation indices through a continuous wavelet transform using the Mexican hat and the Morlet mother wavelets. The time-average wavelet variance (TAWV) and the scale-average wavelet variance (SAWV) were then calculated based on the wavelet spectrum of the Mexican hat and the Morlet wavelet, respectively. The class separability based on the JM distance was evaluated to discriminate the proper period or scale range applied. Finally, a procedure for criteria quantification was developed using the TAWV and SAWV as the major metrics, and the similarity between unclassified pixels and established land use/cover types was calculated. The proposed CIWJ method was applied to the middle Hexi Corridor in northwest China using 250-m 8-day composite moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index (EVI) time series datasets in 2012. The CIWJ method was shown to be efficient in crop field mapping, with an overall accuracy of 83.6 % and kappa coefficient of 0.7009, assessed with 30 m Chinese Environmental Disaster Reduction Satellite (HJ-1)-derived data. Compared with methods utilizing information on either frequency or time, the CIWJ method demonstrates tremendous potential for efficient crop mapping and for further applications. This method could be applied to either coarse or high spatial resolution images for agricultural crop identification, as well as other more general or specific land use classifications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NEW DAMAGE INDEX FOR STRUCTURAL DAMAGE IDENTIFICATION BY MEANS OF WAVELET RESIDUAL FORCE

In  this  paper  a  new  method  is  presented  for  structural  damage  identification.  First,  the damaged structure is  excited by short  duration impact acceleration  and then, the  recorded structural displacement time history responses under free vibration conditions are analyzed by Continuous Wavelet Transform (CWT) and Wavelet Residual Force (WRF) is calculated. Finally, an effective d...

متن کامل

TESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE

This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...

متن کامل

Kohonen Self Organizing for Automatic Identification of Cartographic Objects

Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...

متن کامل

A Fast Localization and Feature Extraction Method Based on Wavelet Transform in Iris Recognition

With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This rese...

متن کامل

A New Method for Multisensor Data Fusion Based on Wavelet Transform in a Chemical Plant

This paper presents a new multi-sensor data fusion method based on the combination of wavelet transform (WT) and extended Kalman filter (EKF). Input data are first filtered by a wavelet transform via Daubechies wavelet “db4” functions and the filtered data are then fused based on variance weights in terms of minimum mean square error. The fused data are finally treated by extended Kalman filter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental monitoring and assessment

دوره 186 11  شماره 

صفحات  -

تاریخ انتشار 2014